

Overview of NIST

National Institute of Standards and Technology

- National metrological institute (NMI)
- Founded in 1901
- ≈3000 employees across multiple campuses

- Maintains time measurement for the US (atomic clock)
- Four Nobel prize winners
 - NIST supplies over 1,300
 Standard Reference Materials (SRMs) for industry, academia, and government use in calibration of measurements

Overview or marrial facilities indice	Overview of	^f Human Ic	lentity Pro	iect
---------------------------------------	-------------	-----------------------	-------------	------

Materials Measurement Laboratory Biomolecular Measurement Division Applied Genetics Group Human Identity

- Past and current HID projects:
- Develop and assess emerging technologies: miniSTRs, rapid PCR, new STR loci, mass spectrometry, SNPs, DNA mixture analysis, high throughput sequencing (next-generation)
- Training and workshops for the forensic DNA typing community (e.g. STRBase www.cstLnist.gov/strbase)
- Reference materials (SRMs) to support forensic DNA typing measurements

NIST Standard Reference Materials Traceable standards to ensure accurate measurements in our nation's crime laboratories Human Identity SRMs Certificate of Analysis SRM 2391c - PCR-Based DNA Profiling SRM 2392 & 2392-I - mitochondrial DNA SRM 2395 - Y-STR DNA Profiling Lab 1 Lab 2 SRM 2372 – Human DNA quantitation Standard Reference Material Calibration with SRMs enables Current price: \$626 USD confidence in comparisons of results between laboratories expanded CODIS core loci and Y-STRs

Levels of Confidence

Information contained in SRM certificate of analysis

- Certified e.g. full Sanger sequencing to determine an STR allele
 - A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or taken into account.
- Reference e.g. multiple PCR genotyping assays to determine an STR allele
 - A NIST Reference Value is a best estimate of the true value provided by NIST where all known or suspected sources of bias have not been fully investigated by NIST.
- Information e.g. one PCR assay using ILS sizing to determine an STR allele
 - An information value is considered to be a value that will be of interest and use to the SRM user, but for which insufficient information is available to assess adequately the uncertainty associated with the value, or a value derived from a limited number of analyses.

May, W.E.; Gills, T.E.; Parris, R.; Beck, IJ, C.M.; Fassett, J.D.; Gettings, R.J.; Greenberg, R.R.; Guenther, F.R.; Kramer, G.; MacDonald, B.S.; Wiee, S.A.; Definitions of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements; NIST Special Publication 266 136 (2000); ovaliable at http://ls.nist.gov/MeasurementServices/Reference/Materials/PUBLICATIONS.c/m

Characterization of the existing SRMs

Current Status

- 2391c PCR Based DNA profiling standard
 - 68 STR markers (51 autosomal + 17 Y chromosome)
 - STR repeat lengths (alleles) were certified using multiple (unique) PCR primer sets
 - Sanger sequencing was only performed for loci without multiple PCR primer sets (only 10%)
- 2392 & 2392-I Mitochondrial DNA sequencing standard
 - Entire mtGenome (≈16,569 bp) was certified by Sanger sequencing
 - Multiple F/R strand coverage across the mtGenome

Use of NGS for forensic applications

Highly-parallel/high-throughput next-generation sequencing technologies provide the ability to directly sequence forensically relevant targets ssues: sample input amounts, back compatibility, new workflows, cost, throughput, etc

- · Whole mitochondrial genome analysis
 - Potential for improved sensitivity, mixture detection, multiplex sequencing of full mitochondrial genomes
 - Detection of minor SNP variants heteroplasmy
- · Going in depth into STR loci and beyond
 - STRs are useful for legacy (databases)
 - SNPs within STRs identify 'sub-alleles'
- Forensically relevant SNPs: newer human identity applications: biogeographical ancestry, externally visible traits, complex kinship, degraded samples, mixtures, low template, and other applications

Initial Goals

- To characterize existing forensic SRMs with NGS
 - Further characterizes the materials with a new technique
 - Supports adoption of NGS in forensic community
 - 2391c: not all STR loci have full sequence information
 - 2392 and 2392-I: confirm Sanger data with a high coverage sequencing technology
 - Understand bias between NGS platforms: chemistry and bioinformatics
- Is there a need for a new material?
 - Forensic validation
 - Clinical validation

Multiple NGS Platforms

- Use of multiple platforms to obtain a consensus sequence for the SRMs
 - Identify and reduce the false positives and negatives
 - Identify and control for bias in a specific chemistry and/or informatics pipeline

NIST SRM 2392 & 2392-I

- Mitochondrial DNA sequencing Standard Reference Materials
 - Characterized for mtDNA genome sequence composition
 - Reference used to validate measurement techniques
 - Recommended by FBI as positive control for sequencing labs
- SRM 2392
 - Contains 3 components (extracted DNA)
 - 2392 A From cell line CHR
 - 2392 B From cell line 9947A
 - 2392 C Cloned region of heteroplasmy
- SRM 2392-I
 - · From cell line HL-60

12 Amplicon PCR

0.8 kb to 1.5 kb

Sequencing studies were performed on four NGS platforms

- Ion Torrent PGM
 - Edge Biosystems (outsourced)
 - Experiments performed at NIST
- Illumina HiSeq 2000
 - Beckman-Coulter Genomics (outsourced)
- Illumina MiSeq
- Edge Biosystems (outsourced)
- Illumina MiSeq and HiSeq platforms will be online at NIST by the end of this summer
- SOLID 5500
 - Experiments performed at NIST

Data Processing, Alignment, and Variant Calling

	Ion Torrent PGM	Illumina MiSeq	Illumina HiSeq	SOLID 5500
Signal Processing Output: FASTQ	Torrent Server	MiSeq Reporter	HiSeq Control	LifeScope
Read Mapping Output: BAM	Torrent Server	Novoalign	BWA	LifeScope
Variant Calling Output: VCF	Torrent Server	GATK	GATK	GATK

Abbreviation

FASTQ – Unaligned reads in text format with quality scores

BAM – Binary Alignment Map (Aligned reads)

VCF – Variant Call File

BWA – Burrows Wheeler Aligner

GATK – Genome Analysis Tool Kit

Sequence Coverage Summary Experiment Design EdgeBio PGM 280 x Seven mtGenomes + spike-in controls** NIST PGM Run 1 6,500 x Three mtGenomes NIST PGM Run 2 9,000 x Three mtGenomes Illumina MiSeq 49,000 x Seven mtGenomes Illumina HiSeq Seven mtGenomes + spike-in controls** 41.000 x NIST SOLID Seven mtGenomes + spike-in controls** 29,000 x

* MQ20 = reads with aligned quality score of 20 or above = less than 1 error per 100 bases

False Positives and False Negatives

Using platform specific informatics pipeline

		PGM 1	PGM 2	PGM 3	HiSeq	MiSeq	5500
9947A	FP	1	5	3	21	9	11
	FN	3	4	3	3	3	3
CHR	FP	2	6	10	21	9	10
	FN	3	5	4	3	3	4
HL-60	FP	1	8	8	20	9	8
	FN	1	2	1	1	1	1
Avg Coverage		280	6,500	9,000	49,000	41,000	29,000

Calls made to the rCRS

On average 99.94 % agreement with Sanger sequencing

False Positives and False Negatives

Using platform specific informatics pipeline

		PGM 1	PGM 2	PGM 3	HiSeq	MiSeq	5500
9947A	FP	1	5	3	21	9	11
	FN	3	4	3	3	3	3
CHR	FP	2	6	10	21	9	10
	FN	3	5	4	3	3	4
HL-60	FP	1	8	8	20	9	8
	FN	1	2	1	1	1	1
Avg Coverage		280	6,500	9,000	49,000	41,000	29,000

False negatives were concentrated in C stretch regions of the genome The FN sites 13,759 and 5,228 were due to low coverage

9947A (FN) = 309.1, 309.2, 315.1, 13,759 CHR (FN) = 309.1, 315.1, 16193.1, 16183, 16189 HL-60 (FN) = 315.1, 5,228

^{**}Spike-in control was NIST SRM 2374: DNA Sequence Library for External RNA Controls

PGM1	PGM 2	PGM3	HiSeq	MSeq		PGM1	PGM 2	PGM3	HiSeq		5500	
					298		_	Ь—		152		Analysis of False Positive
CHR			299			HL-	60		302		-	
CHK					299		00		323		309	for CHR and HL-60
					300	_	_		310	310	310	ioi cint and the oo
			301		301				310	310	310	
			302	302	302				360	0.10		
			309		309					515		
310			310	310	310				1992			
			310	310			2445	2445				Similar issues with homopolymer
			360						3103		-	
				515		_	_		3104		-	low abundance variants, PCR
				639	\vdash	! -	-	-	3105	_	-	primar artifacts
			1992	_	\vdash		3106		5.00	3106		primer artifacts
			3103	_	\vdash	. —				2.00	3476	
			3104		\vdash		-	 		_	4547	
		3105									4722	Again, the remainder of the false
			3105						4796			
			3105				5149	5149				positive sites are not reproducib
	3106	3106		3106		_	5297		_		-	across platforms
					4547	_	_	_	6419			across platforms
					4722	_	_		8163		7508	
			4796			_	8230	8230	8163		-	
	5744	5744				_	0230	8695				
	6220	6220						9541				
			6419						9753			
	_		8163					11512				
	8230	8230									11787	
	_	9546	9753								11826	
		11512	_	_				12417		ᆫ		
	_				11826	_				12417		
	_	12417	-	12417	\vdash	l	13058	\vdash		12418	-	
			-	12418	\vdash	-	13058	_	14188	_	-	
	12704		⊢	-	\vdash	14199	14199	14199	14199	14199	-	
	_	13045		-	\vdash				15259	1		i
			14188	.	\vdash				15877			
14199	14199	14199	14199	14199	\vdash		16361					
			15259		1				16564			
	_											
			15877						16565	16568		

Variant Calls – Concordance

SRM 2392 Component B (9947A)

Nucleotide Position	rCRS Reference Sequence	SRM 2392 Component B Sanger Call	EdgeBio PGM	NIST PGM run 1	NIST PGM run 2	EdgeBio Illumina MiSeo	Beckman Genomics Illumina HiSen	NIST
93	A	G	G	G	G	G	G	G
195	T	Č	c	c	č	č	č	c
214	A	G	G	G	G	G	G	G
263	A	G	G	G	G	G	G	G
309.1		С						
309.2	- 1	C						
315.1	- 1	C						
750	A	G	G	G	G	G	G	G
1393	G	G	G/A	G/A	G/A	G/A	G/A	G/A
1438	A	G	G	G	G	G	G	G
4135	T	C	С	С	С	c	С	С
4769	A	G	G	G	G	G	G	G
7645	T	С	c	С	c	c	С	С
7861	T	С	c	С	c	c	С	С
8448	T	С	c	С	c	С	С	С
8860	A	G	G	G	G	G	G	G
9315	T	С	c	С	c	c	С	С
13572	T	c	c	С	c	c	С	С
13759	G	A	A		A	A	A	A
15326	A	G	G	G	G	G	G	G
16311	T	c	c	С	c	c	С	С
16519	T	C	С	С	С	С	С	С

Heteroplasmy at Position 1,393

SRM 2392 Component B (9947A)

Nucleotide Position	rCRS Reference Sequence	SRM 2392 Component B Sanger Call	EdgeBio PGM	NIST PGM run 1	NIST PGM run 2	EdgeBio Illumina MiSeq	Beckman Genomics Illumina HiSeq	NIST
93	A	G	G	G	G	G	G	G
195	т	С	c	C	U	С	n	С
214	A	G	G	G	G	G	G	G
263	A	G	G	G	G	G	G	G
309.1		С						
309.2		С						
315.1		С						
750	Δ	6	6	6	6	6	6	6
1393	G	G	G/A	G/A	G/A	G/A	G/A	G/A
1438	A	G	G	G	G	G	G	G
4135	т	С	c	C	С	C	n	С
4769	A	G	G	G	G	G	G	G
7645	т	С	c	C	С	С	n	С
7861	т	С	c	C	С	C	n	С
8448	т	С	c	C	С	С	n	С
8860	A	G	G	G	G	G	G	G
9315	т	С	c	C	С	C	n	С
13572	т	С	c	C	С	C	n	С
13759	G	A	A		A	A	A	А
15326	A	G	G	G	G	G	G	G
16311	т	С	c	C	С	C	n	С
16519	T	C	C	C	C	С	0	С

Heteroplasmy detected by NGS at Site 1,393

• Agreement across platforms (high confidence)

≈ 17.6% (± 2.6%) minor component "A"

Experiment	Reference "G"	Variant "A"	Coverage
EdgeBio PGM	77.3%	22.7%	97 x
NIST PGM Run 1	82.5%	17.5%	2940 x
NIST PGM Run 2	83.4%	16.6%	3275 x
Illumina MiSeq	83.7%	16.3%	26,234 x
Illumina HiSeq	84.4%	15.6%	62,186 x
NIST SOLID	82.5%	16.9%	24,226 x

Site 1,393 also confirmed by Niels Morling's lab using 454 technology (Martin Mikkelsen)

'Challenging' Samples

Mitochondrial haplogroups

- C1-3-02
 - 48 differences from rCRS, del-249, 290, 291, 523, 524
- L1b-2-03
- 87 differences from rCRS, del 523, 524, Cins-573.1-573.4
- B2-1-07
- 46 differences from rCRS del-8281-8289
- L0a-1-03
 - 90 differences from rCRS, del-523, 524

Selected from NIST US population samples

False Positives and False Negatives

Using platform specific informatics pipeline

		PGM	HiSeq	MiSeq	5500
C1-3-02	FP	1	29	17	18
\longrightarrow	FN	8	8	7	8
L1b-2-03	FP	1	25	15	11
→	FN	10	9	9	11
B2-1-07	FP	4	25	9	16
\longrightarrow	FN	17	14	15	14
L0a-1-03	FP	2	21	10	8
→	FN	6	5	4	4

False Negatives

common across the 4 platforms

- C1-3-02
 - 48 differences from rCRS, del-249, 290, 291, 523, 524
 - FN: 249, 290, 291, 309.1, 315.1, 523, 524
- - 87 differences from rCRS, del-523, 524, Cins-573.1-573.4
 - FN: 309.1, 315.1, 523, 524, 573.1-.4, 14560
- - 46 differences from rCRS del-8281-8289
 - FN: 309.1, 309.2, 315.1, 8281-8289, 16182, 16183, 16189
- L0a-1-03
 - 90 differences from rCRS, del-523,524
 - FN: 315.1, 523, 524

Summary

- · The consensus data from the four NGS platforms for the mitochondrial SRMs agree with Sanger sequencing data
 - G/A heteroplasmy at 1,393 confirmed
 - C insertions and deletions are issues (assemblers/variant callers)
 - The majority of false positives are of low abundance and not reproducible across platforms
- · Continuing work
 - Experiments for setting a variant calling threshold
 - Evaluate a three amplicon approach for mitochondrial DNA enrichment
 - Sequence the mitoSRMs on the PacificBiosciences platform (Collaboration with Children's National Medical Center)
 - Benefit from a standardized (forensic) informatics pipeline (CLC bio software, NextGENe)
- 2391c characterization
 - Sanger and NGS sequencing of STR alleles
 - Beta test: LifeTech SNP panel, Illumina assays this fall

Clinical reference material – 'Genome in a Bottle'

44.a.//	/bi-tb/	,,,,,, /\ /allana	C+:-	2012 245
nttp://www.csti.nist.	gov/biotech/strbase/pub_	_pres/ valione_	_croatia_	_2013.pat

